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ABSTRACT 

Two different definitions of rotational relaxation times were used to calculate rota- 
tional collision numbers for pure polar gases. One definition was based on the relaxation 
equation for rotational energy while the other was based on the connection between relax- 
ation time and volume viscosity. For the purposes of the calculation, a polar molecule 
was taken to be a point dipole imbedded in a hard core and the interaction between mole- 
cules was confined to a plane. A classical calculation showed that the two definitions a re  
equivalent, a t  least through the third order of a perturbation calculation. 
tions predicted that increasing the temperature and decreasing the dipole moment and 
moment of inertia should increase the rotational collision number. 
qualitative agreement with experiment insofar as the dipole moment and moment of inertia 
dependence a re  concerned. 
the theoretical temperature dependence since the experimental temperature dependence 
is somewhat in doubt. 

Both defini- 

The results a re  in 

No conclusion can be made concerning the correctness of 
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SUMMARY 

Two different definitions of rotational relaxation t imes were used to calculate rota- 
tional collision numbers for  pure polar gases. One definition was based on the relaxa- 
tion equation for rotational energy while the other was based on the connection between 
relaxation time and volume viscosity. For the purposes of the calculation, a polar 
molecule was taken to be a point dipole imbedded in a hard core and the interaction be- 
tween molecules was confined to a plane. A classical calculation showed that the two 
definitions are equivalent, at least through the third order of a perturbation calculation. 
Both definitions predicted that increasing the temperature and decreasing the dipole 
moment and moment of inertia should increase the rotational collision number. The 
results are in qualitative agreement with experiment insofar as the dipole moment and 
moment of inertia dependence a r e  concerned. No conclusion can be made concerning the 
correctness of the theoretical temperature dependence since the experimental tempera- 
ture dependence is somewhat in doubt. 

INTRODUCTION 

In comparison with vibrational relaxation, relatively little experimental data on ro- 
tational relaxation exist in the literature. This is particularly true of rotational relaxa- 
tion in polar gases, and, until quite recently, experimental values have been almost 
nonexistent. However, recent experimental studies have yielded rotational relaxation 
times, or  equivalently, rotational collision numbers for a number of the more common 
polar gases (refs. 1 to 10). Some of the available data is summarized in table I. The 
data (ref. 9) for  the molecule NO have not been included because it is considerably less 
polar than the molecules of table I, and hence the dipole-dipole potential is probably not 
the dominant interaction. In addition, a ZROT for  ammonia, determined by Petralia 



, . .. .. ~ 1 . 1 1 . 1 1 1 ,  ,1111 9 ,,,,,,.,.,,, I , ,  111 1.1111.1.1 I .  

(ref. ll), has not been included since it is approximately four times larger than the cor- 
responding value in table I. In a private communication, Dr. R. S. Brokaw of this 

for  H S that is given in table I appears 2 laboratory expressed the opinion that the ZROT 
unrealistically large when compared with similar molecules. However, I have included 
it in the tabulation because it is the only data available for this molecule. Except for 
the fluoromethanes, the experimental collision numbers have been obtained from an 
analysis of either acoustic absorption or  thermal conductivity measurements. The 
fluoromethane data were derived from nuclear magnetic resonance spectra (ref. 10). 
It is by no means certain that the three experimental techniques give comparable values 
fo r  the rotational collision number ZROT. The two molecules HC1 and H 2 0  can be used 
to compare the results from thermal conductivity and acoustic measurements. These 
two methods appear to give consistent results as is shown in figure 1. 
is quite important since thermal conductivity measurements coupled with the theory of 
Mason and Monchick (ref. 12) promises to be the most convenient way of obtaining ZROT. 
The NMR experiments also appear to give results that a r e  comparable to those from 
thermal conductivity measurements, at least for spherically symmetric molecules 
(ref. 10). 

of a polar gas: (1) the magnitude of the permanent electric dipole moment, (2) the mass 

This agreement 

There are three obvious parameters that could affect the rotational collision number 

TABLE I. - PROPERTIES O F  POLAR GASES 

Molecule 

HC1 
DC1 
H F  
DF 

H20  
D2° 
NH3 
ND3 

s02 

CH2F2 

H2S 

15NH3 

CHF3 

CH3F 

2 

Electr ic  
dipole 

moment, 

2 P >  
(esu)(cm 1 

. 081X10-18 

.085 

. 8 3  

.837 

. a44 

.861 

.477 

.509 

.477 

.631 

.645 

. 9 3  

. 8 5  

.92 

Molecular 
weight, 

M 

36.469 
37.476 
20.008 
21.014 
18.016 
20.029 
17.032 
20.050 
18.033 

64.063 
70.019 
52.026 
34.034 
34.080 

(a) Molecular proper t ies  

2 Moments of inertia,  (g-cm ) 

IB 

2 . 6 4 3 1 ~ 1 0 - ~ (  
5.1404 
1.33563 
2. 54140 
1.9180 
3.841 
2.8087 
5.4129 
2.8159 

31.322 
i l .  08 
79.1 
32.854 
3,1020 

Average 
moment of 

inertia,  
I 

2 . 6 4 3 1 ~ 1 0 - ~ '  
5. 1404 
1.33563 
2. 54140 
1.9603 
3. 7827 
3.3438 
6.5406 
3.3486 

63.493 
03.61 
62. 3 
23.74 
3.8693 

Moment of 
inertia to 
molecular 

weight ratio,  

I/M 

0 . 7 2 5 ~ 1 0 - ~ '  
1.372 

.668 
1.209 
1. 088 
1.889 
1.963 
3.262 
1. a57 

.991  
4.797 
1.975 
6.975 
1.135 



totational 
collision, 
number, 

ZROT 

1. 6 

::: 
1 . 3  
1 .2  

2.5 
1.8 

1. 2 
1. 8 
3.3 
6. 9 

2 .01 

1.54 

3.61 

31. 2 

Data Method 
f rom 

r e f e r -  
ence 

(a) 

j j 
2 T 
2 T 

4 I i  
10 N 

10 N 

10 N 

6 A 

TABLE I. - Concluded. PROPERTIES OF POLAR GASES 

(b) Experimental rotational collision numbers 

dolecule 

HC1 

~ ~ ~~ 

DC 1 

totational 
collision 
nu i n  be r , 

Z~~~ 

7 . 0  
6.2 
4.6 
3.6 
3.2 
3.0 

~ 

Data 
f rom 
:efer- 
ence 

8 
2 

I 

Molecule l'empera- 
ture,  

K 

'empera- 
ture,  

K 

273.2 
300.1 
328.5 
374.8 
423.1 
471.4 

300.1 
328. 5 
374.8 
423.1 
471.4 

373.75 
422.30 

373.75 
422.30 

323.2 
381.2 
426.1 
478. 0 
525.6 

381.2 
426. 1 
478.0 
525.6 

300.0 
329.1 
374.6 
424.2 
474.5 
311.2 
333.2 
353.2 
373.2 
393.2 
413.2 
433.2 
453.2 
473.2 

~~ 

~~ 

300.0 
329.1 
374.6 
424.2 
474.5 

300.0 
424.2 

300 
500 
760 
9 00 

m3 

15NH3 

502 

2. 6 
2 . 3  
2 .0 
1 .9  
1 .9  

HF 

DF 

H2° 

D20 

m3 

3 
3 

3 
3 

7 
1 

~ 

~ 

1 

9 . 5  
9 . 1  

4 . 1  
3.8 

4 . 0  
2 . 7  
2 . 5  
2. 3 
2 . 0  

1. 6 
1. 5 
1 . 3  
1 . 2  

CHF3 300 

300 

3 00 
_____ 

CH2F2 

CH3F 

298.2 

1 

1 
T 

1 
T 2 . 3  

2 . 1  
1 .9  
1 . 7  
1. 6 
1.665 
1.700 
1.709 
1.866 
2.000 
2.073 
2.144 
2.299 
2.628 

T ,  thermal conductivity; A, acoustic absorption; N, nuclear magnetic resonance, 
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distribution as characterized by the ratio of an  arithmetic mean moment of inertia I 
to the mass M, and (3) the temperature T. The qualitative effect of these parameters 
can be deduced from the values of ZROT and the molecular properties that a r e  given in 
table I. Thus, the pair of molecules H 2 0  and H2S have approximately the same value of 
I/M but appreciably different dipole moments; a similar relation exists between the 
pair D20 and 15NH3. The data for  these two.pairs of molecules indicate that an increase 
in the dipole moment produces a decrease in ZROT. This effect was first noted by 
Brezeale and Kneser (ref. 8) when they compared the ZROT for HC1 with that of s im- 
ilar nonpolar molecules. To determine the role of mass  distribution in the rotational 
relaxation process, we can compare the pair of molecules HC1 and DC1 since they have 
very nearly the same dipole moments. This is also true of the pair H20 and D20 and 
the set of molecules NH3, 15NH3, and ND3. These comparisons indicate that an  increase 
in I/M produces a decrease in ZROT. Finally, the data of table I can be examined to 
determine the temperature dependence of ZROT. All the molecules, with the exception 
of SO2 and NH3, have a ZROT that decreases with temperature. The ZROT for SO2 
increases with temperature. 
gave a ZROT that decreases with temperature, but the similar experiments of 
Srivastava and Das Gupta (ref. 5) showed the opposite results. It is interesting to note 
that only a small  change (2 to 3 percent) in the thermal conductivity values of Srivastava 
and Das Gupta is sufficient to make ZROT a decreasing function of temperature (ref. 5). 
This sensitivity makes the temperature dependence of ZROT uncertain. 

pared with theoretical predictions since no theoretical calculations of ZROT for  polar 

For NH3, the experiments of Baker and Brokaw (ref. 2) 

The experimentally deduced effects of the parameters I/M and T cannot be com- 
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gases exist. However, some classical calculations have been made for a number of 
nonpolar gas models. Sather and Dahler (refs. 13 and 14) have examined the rough 
sphere, the spherocylinder, and the loaded sphere gas molecules. For  the rough sphere 
the find 

2 
Z&T cc (41/Mo2)/(1 + 41/Ma2) 

where I is the moment of the inertia, M the molecular mass, and (J the molecular 
decreases with increasing I/M. For  diameter. Because 4I/Ma << 1, the ZROT 

the spherocylinder and the loaded sphere, their calculations show the opposite depend- 
ence, that is, ZROT increases with increase in I/M. Widom's calculations (ref. 15) 
for rough sphere molecules being relaxed by an  inert  gas give a dependence on I/M 
similar to Sather and Dahler's rough sphere results. Using a somewhat more realistic 
potential but restricting collisions to a plane, Parker  (ref. 16) showed that the rotational 
collision number increased linearly with I/M. Finally, Brout's (refs. 17 and 18) quan- 
tum mechanical calculations imply a decreasing ZROT with increasing I/M. The 
theoretical temperature dependence of ZROT, like its mass  distribution dependence, is 
a strong function of the model used in the calculation. For  rough spheres, spherocylin- 
ders  and loaded spheres, Sather and Dahler (refs. 13 and 14) find ZROT to be inde- 
pendent of temperature. However, when the rough spheres and the spherocylinders are 
surrounded by a square well potential, the rotational collision number becomes a rapidly 
increasing function of temperature. 
creases with temperature although at a somewhat greater ra te  than the square-well 
models. 

Recently Nyeland (ref. 19) reapplied Parker 's  model for  the calculation of ZROT 
but used a different definition fo r  ZROT; the two possible definitions a r e  discussed in 
the next section. In contrast to Parker 's  results, Nyeland's ZROT decreased with an 
increase in the moment of inertia and had a smaller rate of increase with temperature. 
This difference might be due either to the use of different definitions or to different 
approximations in the calculation. 

2 

Parker (ref. 16) also obtained a ZROT that in- 

In view of the present uncertainties concerning the rotational relaxation of polar 
gases, it seemed desirable to attempt a theoretical treatment of the problem. It would 
be preferable to car ry  out a quantum mechanical treatment, and, indeed, Cross and 
Gordon (ref. 20) have recently evaluated the first Born approximation to the scattering 
matrix for  scattering from point dipoles. However, they make no attempt to account 
for  short  range interactions since their primary concern is with the effect of resonant 
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scattering on the total scattering cross  section. It has been conjectured by Mason and 
Monchick (ref. 12) that resonant scattering is also a significant effect in rotational re- 
laxation. However, based on experimental results, Baker and Brokaw (ref. 1) suggest 
that the effect may be classical rather than quantum mechanical. For this reason, it 
would be desirable to see  what extent classical mechanics can account for  the experi- 
mental observations. An additional objective is to ascertain the effect of using different 
definitions of relaxation times. 

. . The calculation I shall describe is essentially a classical perturbation calculation of 
the change in rotational energy produced by the scattering of permanent electric dipoles. 
The molecules are constrained to a plane and no out-of -plane forces a r e  permitted. 
This sacrifice of some of the physical reality is necessary in order to make the calcu- 
lation mathematically tractable. The calculation is by no means trivial even with this 
assumption. 
ably from Parker's, although both are two dimensional. I shall employ an interaction 
picture of classical mechanics as described by Garrido (refs. 2 1  and 22). For con- 
venience, pertinent features of Garrido's method are summarized in appendix A. 

The interaction potential and the details of the computation differ consider - 

ROTATIONAL RELAXATION TIMES 

Two definitions of relaxation times have appeared in the literature. These two 
definitions have not been shown to be equal; however, they are often used interchange- 
ably. The first of these definitions is a phenomenological one and corresponds to the ad 
hoc introduction of an  additional equation (and an adjustable parameter) to supplement 
the usual hydrodynamic -thermodynamic equations of continuum mechanics. This sup- 
plementary equation was initially introduced to explain acoustic absorption experiments. 
The new parameter, known as a relaxation time, is defined by the supplementary 
equation. If we restr ic t  our attention to rotational energy, then the rotational relaxa- 
tion time T~ is defined by 

dt rR 

In this equation ER is the contribution of rotational energy to the thermodynamic inter- 
nal energy. The equilibrium value of the rotational internal energy is ER(T) while the 
instantaneous, nonequilibrium value is ER(t) . 

frequencies it is impossible to experimentally separate the absorption of acoustic energy 
due to viscous-thermal effects from that due to a relaxation phenomena (ref. 23). The 

The alternate definition of a relaxation time is based on the fact that at low acoustic 
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absorption can be corrected for  the effects of shear viscosity and thermal conductivity 
using experimentally determined values of shear viscosity and thermal conductivity. 
It cannot, however, be corrected for  the absorption due to volume (or bulk) viscosity 
since there is no known experiment that independently measures this transport coeffi - 
cient. 
mon practice to equate the volume viscosity absorption with the relaxation absorptions. 
This leads to a relaxation time, T;, defined in te rms  of the volume viscosity K by the 
equation 

Consequently, little is known about the volume viscosity and it has become com- 

where u is the number density of particles, Cv is the heat capacity at constant volume, 
and Cint is the contribution of internal motions to Cv. 
only from rotational motion in our case. 
equations (38) and (74) of the paper by Wang Chang and Uhlenbeck (ref. 24). Wang Chang 
and Uhlenbeck have deduced an expression for  K by generating the normal solution of 
the Boltzmann equation and I shall use the classical equivalent of their semiclassical 
expression for K in my calculation of T;. 

Rotational relaxation times, obtained from experiments are generally O(l0- lo  sec) , 
Therefore, i t  becomes convenient to express relaxation times on a different time scale. 
This time scale is determined by T ~ ,  defined to be the mean time between collisions and 
is a number O(lO-lo sec). Relaxation times expressed on this time scale a r e  known as 
collision numbers Z. 
also have two rotational relaxation collision numbers 

The contribution to Cint is 
Equation (2) can be obtained by combining 

Since we have two rotational relaxation times, T~ and T;, we 

? 

t 7R 
Z~~~ = - 

7C 

(3) 

In a later portion of this report  we will show that the calculation of ZROT is essentially 
the calculation of the average change in rotational energy while the calculation of ZkoT 
reduces to the calculations of the average of the square of the rotational energy change. 
The following three sections of this report  are devoted to this task. 
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Rotational Energy Change in a Col l is ion 

The change in rotational energy produced by a collision will be calculated for  the 
two-dimensional model of molecules constrained to the x-y plane. The molecules will 
have a mass Mk, moment of inertia Ik about an axis perpendicular to the x-y plane, 
and a permanent electric dipole moment pk constrained to the x-y plane. The inter- 
action will be the electric dipole-dipole interaction to which will be added a spherical 
hard core of diameter a. The situation is depicted in figure 2, which also defines the 
coordinates of the problem in the center of mass  coordinate system. The Hamiltonian 
for  the model is a sum of four terms, the relative translational kinetic energy HT, the 
rotational kinetic energy HR, a spherically symmetric short  range interaction +, and 
the dipole -dipole interaction potential V. Using upper case letters for the translational 
coordinates and momenta, and lower case letters for rotational coordinates and mo- 
menta, we can write 

H = H  + V  0 

where 

(4) 

For simplicity, + is taken to be a spherical hard core potential of diameter 
a = (a1 + a2)/2 where a and a2 are the molecular diameters of the colliding mole- 
cules. The explicit expressions for  HT, HR, and V are given in equations (6) to (8). 

1 

HT = 1 2m lP l )2  +($y] 
1 The coordinates Q1 and Q2 are the radius and angle of polar coordinates, while P 

and P2 a r e  the conjugate momenta. 
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Y 

X 

Figure 2. - Unperturbed trajectories for scattering of point dipoles 
with impact parameters greater than molecular diameter. 

The coordinates q1 and q2 are angles specifying the orientation of the dipoles and p1 
and p2 a r e  the conjugate momenta. 
clockwise and m is the reduced mass. The dipole-dipole interaction can be rewritten 
in the alternate form 

All angles a r e  positive when measured counter- 

For the unperturbed problem, both HT and HR are constants of the motion 

0 H T =  E 

where E is the relative translational energy, and ER the rotational energy. The ro- 
tational momenta are also constants of the motion for  the unperturbed problem 

9 



while the rotational coordinates are given by 

The unperturbed problem for  the translation part  is also easily solved; however, for  the 
purpose of this paper, we only need the time dependence of Q1 and Q2. The time 
origin is taken at the point of closest approach on the unperturbed trajectory (Qi = 0). 
F o r  impact parameters b 2 u the incident particle is moving parallel to the y-axis and 
QY and Q i  satisfy 

-I 
[Q!$t)] 2 = - 2E t 2 + b 2  

m 

b r a  b 
COS Qi(t) = - 

Q?(t) 

0 1/2 t 
s i n Q  (t) = - - 

("m") Qy(t) d 

In equation (14), 2E/m is simply the square of the relative velocity. From these equa- 
tions it is apparent that QY is an even function of t while Q i  is an odd function of t. 
For impact parameters b < u, the unperturbed trajectories a r e  again selected so that 
QY and Q i  have this same symmetry. This can be accomplished by a rotation of the 
coordinates x, y and the new situation is shown in figure 3. The QY and Q i  a r e  de- 
scribed by the equations 

10 



0 
COS Q,(t) = 

Figure 3. - Unperturbed trajectories for scattering of point dipoles 
wi th  impact parameters less than  molecular diameter. 

In equation (15), the angle I& is defined by 

where sgn(t) represents the sign of the time variable. 
The change in rotational energy, AER = HR(t = + m) - HR(t = - c ), that O C C I  rs as a 

result of the scattering can be calculated from equations (A18) and (A19) of appendix A 
by using HR as the dynamical variable F and by passing to the limit t -c 03 and 
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Since H (t = -m) = Ho(t = -m) by virtue of choice of initial conditions and R R to -c --co. 

since H g  is a constant of the motion along the unperturbed trajectory, we have 

where the first and second order te rms  are given by the integrals 

r t  
H g )  = lim 1 dt' O'(t')H;(t) 

t--co Lo 
to - --co 

to - -- J 
1 The operator S2 (t) is the Poisson bracket operator containing V. The dynamical vari-  

able HR contains only the rotational momenta Pk and not the translational momenta 

Pk. Therefore, it is only necessary to evaluate the effect of the operator S2 (t') on the 
Pk, and in turn, this requires the evaluation of the partial derivatives of equations (12) 
and (13) with respect to po(t') 

1 

J 

and the partial derivatives of Hk(t) with respect to pE(t) 

In equations (19) and (20), 6 
requires not AE but AER The calculation of rotational collision numbers ZROT 

averaged over all possible initial conditions, or  equivalently, averaged over all possible 
unperturbed trajectories. The unperturbed trajectories are determined by specifying 

is the Kronecker delta. 
kj 

R 

12 
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the rotational momenta po the rotational coordinates at t = 0, qE(O), the translational 
energy E, and the impact parameter b. 
Boltzmann type distribution function characterized by a translational temperature T and 
a rotational temperature TR. 

k' 
For a given impact parameter, I shall use a 

The normalized distribution function f can be written 

0 O 5 E 5 . o  --co I g I -co -n 5 qk(o) I n (21) 

The choice of the parameter s determines the type of distribution function, and it can be 
used to introduce an element of three-dimensionality into the calculation. 
corresponds to a two-dimensional Maxwell-Boltzmann distribution; s = 1/2 can be re- 
garded as either a three -dimensional Maxwell-Boltzmann energy distribution o r  a two- 
dimensional flux distribution; and the value s = 1 corresponds to a three-dimensional 
flux distribution. 
venient form with the transformation 

Thus, s = 0 

The distribution function (21) can be written in a slightly more con- 

In te rms  of A(*) the two-temperature distribution function takes the form 

The distribution function, in the form (23), will be used to average (17). When 
A E ~  is averaged over the dipole orientation qY(0) and q(,o)(O), all odd order te rms  in 
the expression (17) disappear. This is most easily shown by noting that the nth order 
term will always contain a factor of the form 

13 



For the odd order terms, either k or 1 must be odd. But the result is always zero 
when an odd power of a trigonometric function is integrated over its period. Thus, if 
(AER) denotes the average of AER over the distribution function (23), we have 

1 

The calculation of the rotational collision number ZRQT requires the calculation 
2 of ( (AER) ) . The quantity (AER)2 can be expressed in t e rms  of the perturbation ex- 

pansion (17) to give the equation 

c o c o  

In this equation, as well as the equation for  ( AER), all odd order te rms  vanish. 
we get an expression for  ( (AER) ) , that is analogous to (24). 

Thus 
2 

If the first nonvanishing te rms  in (24) and (26) can be calculated, then we will have r e -  
sults that a r e  valid through third order in perturbation theory for  both ZROT and 

With these results we will be able to make a meaningful comparison of ZROT 
and ZROT. That is, at least through third order in perturbation, we shall be able to 
make some conclusions regarding the equivalence or inequivalence of the two definitions 

ZKQT; 

of relaxation times T ~ ,  and 7;. The next section will describe the calculation of 
(.f'> while the following section will give the details in the calculation of ((Hg))"). 

Evaluation of Second Order  Term (Hf3 
The integrand of H g )  can be evaluated by the application of equations (20) and (A21). 

This gives the result 
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It should be noted that the translational momenta Pk do not appear in (27) because H 
is only a function of the rotational momenta Pk. Furthermore, since the p: and Pk 
a r e  independent, (A22), when combined with equation (19), gives 

$t 

1 Operating on equation (28) with $2 (t") (or by using (A23) and remembering that the 
second partial derivatives of p: vanish) gives the expression 

Combining equations (28) and (29) with (27) and performing some rearrangements pro- 
duces 

where the time label on po has been suppressed since po is a constant along the un- 
perturbed trajectories. 

using the form (9), and averaging equation (30) over the orientations q;(O) and qi(O), 
there results the relatively simple expression 

j j 

Upon evaluating the partial derivatives of the dipole -dipole interaction potential, 
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In this equation, I have used the notation 

,(*) = p?/I1 f p p 2  

I(*) = I1 * I2 (33) 

Equation (31) can be written in a somewhat more convenient form by introducing a para- 
meter E that will eventually be set equal to unity. Observing that 

(1 + a / a ~ )  cos cu t  = cos ut - wt  s in  ut I EL1 
(34) 

we can define a function .#(E) as 

such that &(l) = E. 
be performed by using the relation between w(*) and A(*) 

The integration of S(E) over the rotational energy distribution can 

to obtain the result 
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To complete the evaluation of the second order term it is still necessary to 
integrate equation (37) over the translational energy distribution and to perform integra- 
tions over t' and tTf between the limits given in (18). The integration limits for  both 
time variables can be extended from --oo to +-oo, and the result multiplied by 1/2, be- 
cause of the symmetry of equation (37) in t' and t". This then allows (l3t))to be 
written as 

2 2  

E-c1 40 kT 
(~f') = lim (F) (e) (1 + a / a ~ )  [ ~ A ( E )  - ~ B ( E ) ]  

where the dimensionless functions A(€) and B(E) are defined by 

In equations (39) and (40), x = E/kT and the time scaling parameter ' T ~  is defined by 
the expression 

2 21112 T =  
I (+) kTR 

Based on the equations for the unperturbed trajectories (14) and (15), two other time 
scales can be introduced by the definition 

2E x 
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where 

2 2 -  mu 72 - - 
2kT 

(43) 

The evaluation of the remaining integrals (39) and (40) is considerably simplified by 
the use of the Fourier transform. This is discussed in appendix B and the principal 
resul t  is given as equation (B9). Combining equation (B9) with equation (38) gives 
(Ht)) the f o r m  

q s +  1) 

2 2  

u6kT (3]s+1/2 (44) 

Note that in equation (44) K is merely used as an integration variable and is not the 
volume viscosity. This is true for  the balance of this section and also in the following 
section. The actual form of the density function P ( K )  can be obtained by evaluating the 
appropriate Fourier sine and cosine transforms. By performing the indicated operations 
on the parameter E ,  equation (44) becomes 

where 

The density function P ( K )  depends parametrically only on b/u. The effect of the 
other parameters is given explicitly in equation (45). By using the letters C and S 
for  the Fourier cosine and sine transforms, respectively, it becomes possible to write 
the density function P ( K )  in the form 
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This expression can be evaluated analytically for  b/a 2 1, that is, when Q 
a r e  given by equation (14); however, for b/o < 1, p( K )  must be calculated numerically. 
In the former case (b/a 2 1) all transforms are reducible to a form that can be recognized 
as either an integral representation of the modified Bessel functions of the second kind 
K or  a derivative of K The integral representation of K is (ref. 25) 

and Qz 1 

V V' V 

C O S  KZ - - 2 1/2 (E)' Kv (:) 
2 v+1/2 r ( v +  1/2) 2b 

by using equation (48), P ( K )  can be written as 

(49) 
2 0  2 2 2  4 2  b 

P ( K )  = (--)(;-- [(5 + 22 ) Z  K1(Z) - 6z3K1(z)K2(z) + 22 K2(zj  - 0 2 1 

where z = Kb/a. 
exponentially for  large values of K. For impact parameters less  than (T the Fourier 
transforms that appear in equation (47) were evaluated numerically by the method de- 
vised by Longman (refs. 26 and 27). 
values of b/a. The value p ( 0 )  can be calculated from 

This density function is finite everywhere and essentially goes to zero 

The function P ( K )  is shown in figure 4 for several 

I 
0 2 4 6 8 10 

K 

Figure 4. - Density funct ion for rotat ional-translat ional 
energy transfer. 
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[(t) 1 + 9 A + A 2  - A 3  b - s  1 
(1 + A)3 U 

2 2 2 where A = 1 - (b/u) . The function K P(K) is plotted in figure 5 for  several  values 
of b/u. 

i 
c 

5 2  
m 
CL =.. c 
c m 

* 1  

0 2 4 6 8 10 
K 

Figure 5. - Density function times !e2. 

Two integrations still remain undone. One of these is the average over impact pa- 
rameters  and the other is the integration indicated in equation (45). Equation (45) can be 
evaluated analytically for  impact parameters greater  than u while for impact parameters 
less than (T it must be calculated numerically. Designating the integral in equation (45) 
by xS, changing the integration variable to z = Kb/U, and substituting equation (49) for 
P(K) gives 

co 

(51) 

3 
(5  + 22 ) Z  K1(z) - 6z K1(z)K2(z) + 22 K1(z) 2 2 2  2 

Z 
dz 

s+3/2 s’ 0 
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This integral can be evaluated by proceeding in a somewhat indirect fashion. The 
denominator is replaced by its Gaussian representation (ref. 28) by using 

This permits equation (51) to be written as 

2 2 2  3 4 2  + 22 ) z  K1(z) - 6z K1(z)K2(z) + 22 K2(z j  (52) 

The integration over z is of the type studied by Ragab (ref. 29) and can be expressed in 
t e rms  of MacRobert's E function (ref. 30) 

dz z 2  -lKm( z)Kn( z) e -Z2/P 

By using this result, the remaining integral over CY is essentially the Laplace transform 
of MacRobert's E function. Transforms of this type were evaluated by Ragab (ref. 31) 
and have been tabulated by Erdelyi (ref. 32). Ragab showed that 

where (Y = k. Combining these two results with equation (52) gives for  the integral Zs 
P+l 
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2 2 

where the E functions have been reduced to their lowest order. This expression can 
now be used in equation (45) to give 

2 

For impact parameters less than u, Z s  and, therefore, the result corresponding to 
equation (54) must be obtained by numerical integration. 
is illustrated in figure 6. It should be noted that, 

behavior of 
continuous, it is 

sharply peaked at b/u = 1. 

A 
2.8 

Impact parameter, blo 

Figure 6. -Average change in dimensionless rotational 
energy as funct ion o impact parameter, Mass d i s t r i -  
bu t i on  parameter, 5' 0.1. 
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Evaluation of the Second Order Term @$) 
The evaluations of @$') ') closely parallels the discussion of the previous section 

and, therefore, some of the details will be omitted. The integrand of Hg)  can be ex- 
pressed in an appropriate form by combining the equations (A20), (A22), (19), and (20) 
to give 

k= 1 

This may now be used to express (H:))' in the form 

=? 
k, j = 1  

Upon evaluating the partial derivatives of the dipole-dipole interaction potential (9) and 
averaging the integrand of (Hg))2 over the orientations qY(0) and qi(0) we obtain the 
function 
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This function 2, although similar to the function 
to Af. The next step in the calculation is to average x over the rotational energy dis- 
tribution and we then obtain 

defined in (31), is not identical 

x 1 + 9 cos 

The right side of this expression is identical to the right side of equation (37) apart  from 
a factor 2kTR. If we now combine equation (58) with the results of the previous section 
we obtain the expression 

The Calculation of ZROT and ZkoT 

Equation (1) can be used as a basis  for the calculation of T ~ .  The derivative 

dE /dt represents the change in rotational energy per  collision averaged over the num- 
be r  of collisions per unit time. This is equivalent to the average change in rotational 
energy per collision, divided by T ~ ,  the mean time between collisions. Thus, 

R 
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at t = 0 equation (1) becomes 

dt 
rC 

ER(T) - ER(t= 0) 

t=O rR 

Assuming the molecules to be rotationally unexcited at t = 0 and solving for  rcril we 
find 

The calculation of AER includes only the contribution of trajectories with impact ( )Av - 
parameters out to some maximun: impact parameter b. All of the impact parameter 
dependence is contained in the integral %,, defined in equation (51). 
to zero so rapidly, the integration ca.1 actually be extended to infinity with little error. 
We, therefore, define a function Os, by 

Because Z s  goes 

where n can either take the value 0 o r  1. The value n = 0 corresponds to a two- 
dimensional calculation while n = 1 corresponds to the "three-dimensional" case. In 
t e rms  of Os,, we can now write the expression for  the change in rotational energy 
averaged over orientations, translational and rotational distribution functions, and impact 
parameters in the form 
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TABLE II. - NUMERICAL VALUES FOR 

FUNCTION Osn 

M a s s  
distributior 
p a r a m e t e r  , 

r2 
0 
2. O X ~ O - ~  

4. O X I O - ~  
6. O X ~ O - ~  
8. OX10-3 

1. ox10-2 
2.ox10-2 
3.OX10-2 
4.ox10-2 
5.ox10-2 

1.ox10-1 

2.ox10-1 

7. 5X10-2 

1. 5XlO-I 

2. 5XlO-I 

Average  rotat ional  energg 
change p e r  coll ision 

O(1/2)0 

0 
2.9884XlO-’ 
3.8473 
4.3908 
4.7823 

5. 0827 
5.9327 
6.3115 
6.4967 
6. 5819 

5 .  5876 
5.4675 
5.1259 
5.7738 
5.4490 

0 1 1  

0 
2.0691x10-’ 
2 .7081 
3.1215 
3.4228 

3.6554 
4.3126 
4.5954 
4.7225 
4.7698 

4.7268 
4.  5916 
4.2626 
3.9464 
3.6659 

1.4443 
1.4207 
1.4207 
1.4066 
1.3972 

1.3905 
1.3757 
1.3734 
1.3757 
1.3799 

1.3937 

1 .4371  
1.4631 

1.4086 

1.4864 

Table I1 gives the function Os, in tabular form. 

parameter p2 that appears in this equation is proportional to the parameter used by 
Sather and Dahler (refs. 13 and 14) in their rough sphere calculations. 
their parameter 41/ma2 only by an  additional factor of (T/4TR). Therefore, the inte- 
grand of equation (45) has a moment of inertia dependence quite similar to the rough 
sphere results. This is particularly true for  the case s = 1/2. Because of this fact and 
because of the sharply peaked behavior of Ss, it is desirable to define a comparison func- 

2 0  tion @in, analogous to Os,, but based on the use of a density function 
6 ( ~  - 1)6(1 - b/a) where 6 ( ~ )  is the Dirac delta function. This gives 

To assist in the discussion of the function Os,, let us  reexamine equation (45). The 

It differs from 

K p ( K )  = 

The function @in can be thought of as corresponding to the rigid sphere result for  the 
model used in this paper. For comparison purposes, figure 7 gives plots of both Os, 
and @in. From figure 7, it can be seen that averaging over the density function p ( ~ )  

has the effect of shifting the maximum from relatively large values of c2 in the function 
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%'n 

- @sn 

- _  

1 I 
0 .05 . 10 II . 15 20 .25  

Mass d is t r ibut ion parameter, c2 
Figure 7. - A  comparison of Osn and  0;" 

O E ~  to relatively small  values of c2 in the function oSn. The net result is that 

ing upon whether c2 lies to the left or  to the right of the maximum. 
from equation (61). The mean time 

between collisions, T ~ ,  is given by 

for this model, can be either an increasing o r  decreasing function of I depend- 'ROT, 

ROT We a r e  now in a position to calculate Z 

f 

(2 -dimensions) 
2nkT 

where v is the number density with dimensions appropriate to either two o r  there dimen- 
sions. Substituting this equation, together with equation (63) into equation (61) gives 
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In the usual case the two colliding molecules are identical and, therefore, y1 = p2 = y 
and a1 = a2 = u. Also, we can write ER = ykT/2 where y is the number of rotational 
degrees of freedom and is either 2 or 3. Thus, equation (65) can be written as 

- 
The adjustable parameter b can be eliminated by considering a ratio of collision num- 
bers.  If, in addition, we consider the near equilibrium situation, we may set T/TR = 1 
to obtain 

where the notation ZRoT(l, T) represents the collision number of species 1 at a temper- 
a ture  T. 

lent of the Wang Chang, Uhlenbeck, and DeBoer expression (ref. 24) for  the volume 
viscosity K can be written in our notation as 

The equation (2) will se rve  as a basis for  calculating ZkOT. The classical equiva- 

K -l- 2a (k3 1/2 (-v cv 
db b (e)2) 'int kT 2n 

0 

Combining this equation with equation (2), the three-dimensional expression for T~ (65), 
and using yk/2 for  Cint gives 
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n =  1, s = 1, T / T ~  = 1 

Strictly speaking, the parameters  n and s were unnecessarily introduced into this 
equation since the Wang Chang, Uhlenbeck, and DeBoer formula for K requires both of 
these parameters to be unity. However, if we relax this restriction and permit the com- 
bination n = 0, s = 1/2 we will have a greater parallelism between the calculation of 

The collision number ZROT can then be given an analogous inter- 
pretation. That is, since (AE ) was  estimated fo r  a two-dimensional system, n = 1, 
S = 1, corresponds to a quasi three-dimensional calculation while n = O, S = 1/2 repre-  
sents a two-dimensional calculation. 

approximation given in equation (59). If we then combine this result  with the definition of 
the function Os, given in equation (62) we find 

1 1 

( R 2 )  

Z~~~ and 'ROT- 

We can now substitute for  <AER/kTR)2)in equation (69) by using its perturbation 

Setting p1 = p2 and comparing this with the expression for  ZROT given in equation (66) 

shows that within the level of approximation employed in the calculation we obtain the 
surprising result 

'ROT' 'ROT 

Thus, both definitions give identical predictions about the dependence of the rotational 
collision number on the temperature, the dipole moment, and the moment of inertia. 

COMPARISON WITH EXPERIMENT 

It would be unrealistic to expect equations (66) or (70) to agree quantitatively with 
experiment in view of the approximate nature of the calculation. The best  that ,one can 
hope for is a relative comparison based on equation (67), which holds equally well for  
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? 
because of equation (71). Hence, attention will be confined to a com- 'ROT and 'ROT 

parison of equation (67) with experimental data. 
The molecular diameter and the moment of inertia must be evaluated before the 

theoretical resul ts  (eq. (67)) can be compared with experimental data. The moment of 
inertia will be taken to be the arithmetic mean of a molecule's principle moments of 
inertia. O'Neal and Brokaw (ref. 33) suggest that u be set equal to the viscosity colli- 
sion diameter u and calculated by the relation 77 

In expression (72), q(T) is the viscosity a t  a temperature T. O'Neal and Brokaw used 
u 
appears in the formulae. This use of u for  u might be viewed as an attempt to account 

q 
fo r  the fact that the spherically symmetric short range repulsion, although rising 
abruptly, does not r i s e  vertically as in a rigid sphere. 

(s = 1, n = l), equation (67) takes the form 

only in the calculation of T ~ ;  I shall use the identification (72) for  u wherever it v 

By using equation (72) and considering first the quasi-three-dimensional result  

2 The variable 5 , required for  the evaluation of 011, is to be calculated as 

Some qualitative comments can now be made concerning the behavior of equation (73). 
According to this equation, an increase in dipole moment decreases the collision number. 
Furthermore, since all the moment of inertia dependence is contained in c2 and since 
the values of < (as calculated from eq. (74)) lie to the left of the maximum in ell, an 
increase in I causes a decrease in ZROT. Both of these results a r e  in accord with 

increases with temperature when calculated ROT experimental observations. Finally, Z 
by equation (73), however, because of the compensation due to viscosity, the increase is 
a t  a considerably lower rate  than indicated by the explicit T3 dependence. Based on 
some typical calculations, the increase is very nearly linear at the lower temperatures 

2 
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but becomes somewhat steeper as the temperature is increased. At present, there is 
sufficient uncertainty about the temperature behavior of ZROT so that one cannot con- 
clude that equation (73) either agrees  or disagrees with experiment. 

A comparison between equation (73) and experimental results is made in tables 111 
and Iv. 
addition, viscosity data. The viscosity data cited by Baker and Brokaw (refs. 1 and 2) 
were used in the evaluation of equation (73) for all molecules except SO2, H2S, HF, DF, 
and the fluoromethanes. F o r  SO2 and H2S the viscosity was obtained by fairing a curve 
through the data contained in the references cited by Svehla (ref. 34). The HF viscosity 
was calculated by using the extrapolation formula of Posey (ref. 35). The viscosity c ross  
section of DF was  taken to be equal to HF. The viscosity data for the fluoromethanes was 
taken from Svehla's tabulation (ref. 34). 

and NH3 a r e  compared with experimental values in table 111, Only these molecules could 

To evaluate equation (73), it was  necessary to use the data of table I and, in 

The theoretical temperature dependence of the rotational collision number for  SO2 

TWO - 
dimensional 

TABLE 111. - COMPARISON O F  THEORETICAL 

AND EXPERIMENTAL TEMPERATURE 

Three  - 
dimensional 

DEPENDENCEOF ZROT 

1. 00 
1 .42  
2 . 0 0  
2 .73  

Ten ipe ra -  
t u re ,  

K 

300 
500 
700 
900 

311.2 
333.2 
353.2 
373.2 
393.2 
413.2 
433.2 
453.2 
473.2 

aRef. 4. 
bRef. 5. 

1. 00 
1. 61  
2.42 
3 . 4 2  

Theore t ica l  I Exper imenta l  

1. 00 
1. 02 
1. 05 
1. 07 
1. 09 
1. 12 
1. 14 
1. 16 
1. 18 

I 

1. 00 
1. 05 
1. 09 
1. 13 
1. 17 
1 .21  
1. 25 
1. 29 
1.33 

al .  00 
1.1 to 2. 1 
1 . 9  to 3 . 9  
3 . 7  to 9 . 4  

bl. 00 
1.02 
1. 03 
1 .12  
1. 20  
1. 25 
1. 29 
1. 38 
1. 59 
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TABLE IV. - COMPARISON O F  THEORETICAL AND EXPERIMENTAL 

FOR A GIVEN TEMPERATURE Z~~~ 

'DC ~/'HC 1 

Z ~ ~ 3 / Z ~ 3  

Z 1 5 N H 3 r N H 3  

'DF/'HF 

Z(H2S, 298. 3' K) /  
C(H,O, 381.2' K) 

<(H2S, 298. 3' K)/  
!(HCl, 300.1' K) 

!(CH2F2, 300' K)/ 
!(CHF3, 300' K) 

:(CH2FZ, 300' K) /  
:(CH3F, 300' K) 

T e m p e r a  
ture ,  

K 

300 .1  
328. 5 
375.8 
423 .1  
471.4 

381.2 
426 .1  
478.0 
525.6 

300.0 
329.1 
374.6 
424.2 
424.2 
474.5 

300.0 
424.2 

373.8 
422.3 

__ 

_. 

-----  

----- 

___ - -  

----- 

_ _  

Theore t ica l  

T W O -  

l imensiona 

bo. 54 

i 
63 

1 
b0.64 

.~ 1 - 
bl. 05 

1. 05 

58 
. 58 

-. 

- _. . 

___ 

T h r e e -  
dimensiona 

0. 76 
. 7 7  

C 

1 
co. 75 

. 7 6  

. 7 5  

. 7 6  

'0.78 
. 7 9  

- -. 

-. 1 
cl. 02 
1. 01 

0. 78 
. 7 9  

C 

. - 

1 4 . 8  C 

~ ~ 

. 5 6  C 

1 .08  C 

aRef. 2. 
bModified Sa ther  and Dahler  ( re fs .  2, 13, and 14); 

ZRoT 1 (41/Muv)/(1 2 + 41/Mov) 2 2  . 
Eq. (60). 

dRef. 1. 
Ref.  3. e 

fEefs. 1 and  6. 
gRefs.  2 and 6. 
hRef. 10. 

C 

Experimental  

ao. 43 

. 50 

. 56 

. 6 0  

. 6 2  

52 
---- 
---_ 
--_- 

"0.69 
. 7 0  
. 7 2  
. 7 2  
. 7 4  
.77 

1. 05 
1. 04 

.- 

a 

eo. 44 
. 4 1  

fll .  6 

g5.0 

h. 77 

h. 43 

-. 

_ _  
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be compared with theoretical resul ts  because the experimental data for the other mole- 
cules indicate that ZROT decreases  with temperature, To put table III in a somewhat 
better perspective, it should be pointed out that the collision numbers obtained from the 
ammonia data of Baker and Brokaw (ref. 2) have a temperature dependence that is oppo- 
site to those of Srivastava and Das  Gupta (ref. 5). Thus, it is somewhat surprising that 
the experimental and theoretical values agree as well as they do. In the light of the 
present uncertainties concerning the experimental data, this agreement must be viewed 
as largely fortuitous. 

A comparison of isotope and dipole moment effects, as calculated from equation (73), 
is given in table IV. In addition, the results from the modified Sather and D,ahler formu- 
la (ref. 33) are also given. Here, the agreement is not as good as was the case for  
table IV, in fact, some of the calculated numbers differ from the experimental results 
almost by a factor of two. In general, it can be said that equation (73) qualitatively 
mi r ro r s  the isotope and dipole moment effects, however, quantitative agreement between 
theory and experiment is lacking. 

the indices s and n should take. The quasi-three-dimensional case corresponds to 
the choice s = 1 and n = 1 while the two-dimensional case corresponds to the choice 
s = 1/2 and n = 0. Up to now, we have only considered the ffthree-dimensional case. 
The relation of the two choices can be easily established from equation (67). 

In addition to choosing values of D and I, it is necessary to decide what values 

The parameter c2 is generally less than 5 ~ 1 0 - ~  and, thus from table 11, it follows that 
the Os, in equation (75) produce differences of the order  of 1 percent. The ratio of 
viscosity c ross  sections, on the other hand, can produce differences of the order of 
10 percent or  more. Since the viscosity c ross  sections of the isotopic pairs are gener- 
ally taken to be equal at a given temperature, we can conclude that both the two- and 
?'three-" dimensional cases  will predict essentially the same moment of inertia depend- 
ence. However, because of the ra ther  strong temperature dependence of the viscosity 
cross  section, there will be a substantial difference in the predicted temperature de- 
pendence. In general, the two dimensional case displays a considerably slower increase 

with temperature. Th;s can be seen from the data in table III. It does appear 
that the "threeff dimensional case Xrees with the experimental resul ts  somewhat better 
than does the two-dimensional case. 

Of 'ROT 
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CONCLUDING REMARKS 

The calculations that were described in the previous sections show that the two 
definitions of a relaxation time a r e  equivalent for  our model, at least through third order  
in perturbation. Furthermore, a comparison with experimental values given in the liter- 
ature seems to indicate that the calculated rotational collision number is in moderate 
agreement with experimental results. 

The reason for  the lack of better agreement between the theoretically and experi- 
mentally deduced effects of temperature, dipole moment, and moments of inertia on 

tion was essentially two dimensional and not three dimensional as required by reality. In 
recent Monte Carlo calculations both Bunker and Blais (ref. 36) and Karplus and Raff 
(ref. 37) detected considerable differences between two- and three-dimensional results. 
A portion of the disagreement might possibly be a result of the data used in evaluating 
equation (73). For example, a 2 percent e r r o r  in the viscosity ratio results in a 4 per- 
cent e r r o r  in the ratio of ZROT. A similar e r r o r  in the dipole moment ratio produces 
an 8 percent e r r o r  in the ZRoT ratio. Such e r r o r s  a r e  undoubtedly contributing factors. 
For example, the viscosity c ross  sections of isotopic pairs  were generally taken to be 
equal. Only in the case of the pair H20 and D20 was any correction made. A third rea- 
son for  the discrepancies is the apparent sensitivity of ZROT to relatively small  exper- 
imental e r r o r s  in thermal conductivity. 
be a result  of some deficiency in the theory used for  extracting ZROT from thermal 
conductivity measurements. At present, it is impossible to a s ses s  the relative impor- 
tance of each of these factors. 

is problematical. In part, it may be due to the fact that the theoretical calcula- Z~~~ 

Finally, some of the difficulties might possibly 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 18, 1969, 
129 -01-06-01-22. 
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APPENDIX A 

CLASSICAL PERTURBATION THEORY 

Garrido (refs. 2 1  and 22) has presented a formulation of classical mechanics in the 

For  any classical 
interaction picture. 
treatment of the Dirac or interaction picture of quantum mechanics. 
system with the Hamiltonian 

Formally, the development is very similar to the corresponding 

the solution to Hamilton’s equations can be written in the form 

where q and po a r e  the values of the coordinates and momenta at the initial time to. 
The solution of Hamilton’s equations for the unperturbed systems, characterized by the 
Hamiltonian Ho, can be written in a similar form 

0 

Thus, it is assumed that the initial values of the coordinates and momenta for  both the 
perturbed and the unperturbed system are identical. 

The time evolution of any dynamical variable 

can easily be obtained for either the perturbed o r  the unperturbed system by substitu- 
tions of the appropriate solutions (A2) o r  (A3). For the perturbed system, 

and, similarly, for the unperturbed system, 



I 

The evolution operators U and Uo defined in equations (A4) and (A5) have the usual 
properties 

I u(t, t")U(t", t') = U(t, t') 

u(t, t) = 1 

U-l(t, t') = U(t', t) 

From a consideration of infinitesimal time translations, one obtains the differential 
equations satisfied by the time evolution operator 

where the operator a(t) is defined by 

The second equality in equation (A7) follows from the fact that for  any operator O(t) 

Analogous equations can be written for the unperturbed system. The solution of equa- 
tion (A?) can be easily obtained from the integral form of this  equation. 

U(t, to) = 1 + dt'Ci(t')U(t', to) = 1 + dt' U(t', t0)S2(t0) (A101 

Using the f i r s t  equality in equation (AlO), we get as the iterative solution 

where P is the Dyson t ime ordering operator. Using the second equality in equation 
tion (AlO), we get the alternate result 
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Therefore, the operator U(t, to) is nothing more than a Taylor expansion about to. 

tions (A4) and (A5) can be combined to give 
To apply these resul ts  to perturbation, it is only necessary to observe that equa- 

or  

F(t) = S(t)Fo(t) ( A l a  

where the operator S(t) is defined as 

S(t) = U(t, to)U0(to, t) (A131 

From the differential equations for  U and Uo (eq. (A7)), one readily obtains the differ- 
ential equation satisfied by S 

= S(t)"l(t) 
dt 

1 where the operator 52 (t) is a Poisson bracket 

and V is evaluated along the unperturbed trajectories. The iterative solution of the in- 
tegral  equation obtained from equation (A14) can be written as 

S(t) = Bexp dt' 52'(tV) = 1 + dt' '(t') 
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The time ordering operator 9 in equation (A16) orders  time-dependent operators in 
sense opposite to that of the Dyson time ordering operator P. 

1 1  = a (t')a (t") t' < t" 
(-417) 

= al(t'f)al(t') t" < t' I 952 +)a l(t") 

The relation between F(t) and Fo(t) given by equation (A12) can now be rewritten by 
using the iterative expansion of the operator S(t) given by equation (A16). 

F(t) = F(n)(t) = F(O)(t) + F(')(t) + F(2)(t) + . . . 
n= 0 

where the first three t e rms  are given explicitly by > 

F(O)(t) = Fo(t) 

To evaluate the integrals given in equation (A19) one must be able to determine the 
effect of 0 (t') on the function Fo(t). This is possible when one knows the solution to 
the unperturbed problem in the form of equation (A3). Using equations (A5), (A15), and 
the chain rule f o r  differentiation, we obtain 

1 
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or, upon rearranging, 

Explicitly indicating that more than one set of coordinates and momenta may enter the 
problem, we have for the special case where F depends upon momenta alone, the result 

n 

The second order term is somewhat more complicated 

When the perturbation only depends on coordinates, we can write 

and the second order term 

Q 1 ( t f 9 ) Q  1 (t')pE(t) 

n 
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APPENDIX B 

EVALUATION OF A H  AND B(4 

The function A(€), defined in equation (34), contains an integral of the convolution 
or Faltung type 

where r(t) is the Gaussian function 

The function B ( E ) ,  defined in equation (35), will a lso 

(B2) 

contain a linear combination of 
integrals of the type in equation (Bl) if the trigonometric function in its integrand is 
expanded. The convolution theorem (ref. 38) can be used to rewrite equation (Bl) in 
t e rms  of the Fourier t ransforms of the functions in its integrand 

J= (277) 1/2 co dKF*( K)G( K)R( K )  

where the aster isk is used to denote complex conjugation and where the Fourier t rans-  
forms  are defined as 

For  the case at hand, the functions f(t), g(t), and r(t) possess a definite symmetry being 
either even or odd functions of t. Furthermore, f(t) and g(t) will always have the same 
symmetry. Fo r  an even function the Fourier transform is identical to the Fourier cosine 
transform while fo r  odd functions it differs f rom the Fourier sine transform by a factor 
of i = (-l)1/2. The sine and cosine transforms a r e  defined by the expression 
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1/2 [ dt g(t) f i n  cos &} K t  

Thus, for  example, the Fourier transform of the Gaussian (B2) is 

Combining this result  with equation (B3) and using the symmetry properties of the sine 
and cosine transforms gives 

In the evaluation of A(€) and B(E) it is still necessary to integrate integrals of the 
type (eq. (B7)) over x = E/kT. This can be accomplished without knowing the functional 
form of the transforms F and G. This is possible because the functions f and g de- 
pend only on the combination (t/T) where T contains all the x dependence (eq. (37)). 
This means that with an appropriate change of integration variable equation (B5) takes 
the form 

Using this equation, together with an  analogous expression for the transform F, and 
making the change of variable KT - K gives 
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Now, averaging J(x)  over the energy will give 
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